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ABSTRACT

We present a numerical method to model non-
Newtonian, viscoelastic flow at the microscale. The
equations of motion are the incompressible Navier-
Stokes equations coupled with the Oldroyd-B consti-
tutive equation. This constitutive equation is chosen
to model a Boger fluid which is representative of com-
plex biological solutions exhibiting elastic behavior due
to macromolecules in the solution (e.g., DNA solu-
tion). Our numerical approach is a projection method
to impose the incompressibility constraint and a Lax-
Wendroff method to predict velocities and stresses while
recovering both viscous and elastic limits. The method
is second-order accurate in space and time, free-stream
preserving, has a time step constraint determined by the
advective CFL condition, and requires the solution of
only well-behaved linear systems amenable to the use of
fast iterative methods. We demonstrate the method for
viscoelastic incompressible flow in simple microchannels
(2D) and microducts (3D). 1
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1 EQUATIONS OF MOTION

The incompressible Navier-Stokes equations are a
combination of evolution equations and constraints due
to the incompressibility condition:

ρut + ρ∇ · (u⊗ u) = −∇p+∇ · τ̄
∇ · u = 0 (1)

where ρ is the fluid density, u is the velocity of the
fluid, p is the isotropic pressure and τ̄ is the shear stress.
For Newtonian flow, the shear stress depends on the
instantaneous value of the rate of deformation: τ̄ =
2µD(u) with rate of deformation defined as D(u) =
1
2
(∇u+∇uT ). Consequently, incompressible Newtonian

flow reduces the Navier-Stokes equations to

ρut + ρ(u · ∇)u = −∇p+ µ∆u. (2)
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For non-Newtonian, viscoelastic flow of a Boger fluid
the shear stress depends on the history of the rate of de-
formation. The equations of motion are the incompress-
ible Navier-Stokes equations coupled to the Oldroyd-
B constitutive equation, an evolution equation for the
shear stress contribution due to polymer in the fluid de-
rived from the upper-convected Maxwell equation:

ρut + ρ(u · ∇)u = −∇p+ µs∆u+∇ · τ
τ t + (u · ∇)τ = ∇u · τ + τ · ∇uT

− 1

λ
(τ − 2µpD(u)) (3)

where subscripts s and p refer to solvent and polymer,
respectively, and λ is the relaxation time for the poly-
mer. It is helpful to define a dimensionless quantity
known as the Deborah number which relates the poly-
mer relaxation to the characteristic flow time: De =
λ
t̄ = λγ̇, where γ̇ =

√
II and II is a second invariant of

the rate of deformation.
These equations demonstrate two interesting limits

of the Deborah number: (1) the viscous limit, De = 0
(λ = 0), which yields a Newtonian polymeric stress
contribution to the solvent stress in the momentum
equation, τ = 2µp∆u; (2) the elastic limit, De → ∞
(λ→∞, µp/λ finite). These limits bound the design of
the numerical algorithm presented here.

2 NUMERICAL ALGORITHM

The formulation of appropriate time-discretization
methods for constrained evolution equations is subtler
than evolution equations alone. To address this is-
sue, Chorin [1] introduced projection methods, based
on the Hodge decomposition of any vector field into a
divergence-free part and a gradient of a scalar field. Pro-
jection methods are fractional step methods for which
an intermediate velocity is computed that does not nec-
essarily satisfy the incompressibility constraint. Then
this velocity is corrected so that it satisfies the con-
straint. More recently, Bell, Colella, and Glaz (BCG)
[2] introduced a predictor-corrector method based on
Chorin’s ideas. Some of the key advantages of their
method are that the advective terms can be treated us-
ing explicit high-resolution finite difference methods for
hyperbolic partial differential equations (PDE’s), and



that only linear systems, coming from standard dis-
cretizations of second-order elliptic and parabolic PDE’s
which are amenable to solution using fast iterative meth-
ods such as multigrid, must be solved. This leads to a
method that is second-order accurate in space and time.
It has a stability constraint on the time step due only to
the CFL condition for the advection terms, and a robust
treatment of underresolved gradients in the Euler limit.
Projection methods have been previously used to study
stability of viscoelastic fluids in Taylor-Couette flow [3].

In this section we present a modified version of the
BCG algorithm for the case of a time-dependent stress
represented by the Oldroyd-B constitutive equation.
Our first approach is to treat advective terms with the
Lax-Wendroff (LW) method instead of the higher-order
Godunov method employed in BCG.

2.1 PROJECTION METHOD WITH

REVISED LAX-WENDROFF

Our goal is to design a high-resolution finite differ-
ence method to evolve discrete velocity, pressure and
stress in time. At the beginning of each timestep, ∆t,
we know cell-centered grid representations of velocity,
pressure and stress: uni,j,k, ∇pni,j,k, τni,j,k. The follow-
ing is an algorithm to compute these quantities for dis-
crete timesteps, i.e., to obtain the t = (n + 1)∆t state,
n = 0, 1, 2, ....

First, we construct edge-centered velocities via LW,
omitting the pressure gradient:

ũi+ 1
2
,j,k =

1

2
(uni,j,k + uni+1,j,k) +

∆t

2
(−(u · ∇)u

+
µs
ρ
∆u+

1

ρ
∇ · τ )ni+ 1

2
,j,k. (4)

The edge velocities are then corrected to account for
the pressure (incompressibility) by applying a projection
operator:

u
n+ 1

2

i+ 1
2
,j,k

= ũi+ 1
2
,j,k −∇(∆−1(∇ · ũ))i+ 1

2
,j,k. (5)

We would like to obtain the t = (n + 1)∆t update to
the velocity. In order to do so we first predict a veloc-
ity which is not divergence-free by O(∆t2) because of
a lagged pressure gradient, and using the midpoint rule
for temporal integration:

u∗ = un +∆t(−[(u · ∇)u]n+
1
2 − 1

ρ
∇pn− 1

2

+
µs
ρ
∆(ūn+

1
2 ) +

1

ρ
(∇ · τ )n+ 1

2 ), (6)

where ūn+
1
2 = 1

2
(un + u∗) approximating Crank-

Nicolson and the time-centered advective term is cal-
culated using edge velocities in (5). A final projection

operator is applied to the predicted velocity, u∗, enforc-
ing the incompressibility constraint on the velocity and
updating the pressure gradient:

un+1 = u∗ −∇(∆−1(∇ · u∗)) (7)

∇pn+ 1
2 = ∇pn− 1

2 +
ρ

∆t
∇(∆−1(∇ · u∗)). (8)

The stress update follows a similar algorithm. First,
we construct a LW stress using only the elastic (hyper-
bolic) terms:

τ̃ i+ 1
2
,j,k =

1

2
(τni,j,k + τni+1,j,k) +

∆t

2
(−(u · ∇)τ

+∇u · τ + τ · ∇uT )ni+ 1
2
,j,k. (9)

We then apply the midpoint rule to account for the vis-
cous terms and predict a time-centered stress:

τ
n+ 1

2

i+ 1
2
,j,k

= τ̃ i+ 1
2
,j,k

−∆t

2λ

(

τ
n+ 1

2

i+ 1
2
,j,k
− 2µpD(ūn+

1
2 )
)

.(10)

The stress is then updated to the new time:

τn+1 = τn +∆t
(

−(u · ∇)τ +∇u · τ + τ · ∇uT
)n+ 1

2

−∆t

λ
(τn+1 − 2µpD(un+1)). (11)

The time-centered stress is used in the velocity pre-
dictor (6) to obtain the correct viscous source terms.
The viscous operator looks like

Lu∗ = un +∆t(−[(u · ∇)u]n+
1
2 − 1

ρ
∇pn− 1

2

+
1

2ρ
(µs +

µp∆t

2λ+∆t
)∆un

+
1

ρ

2λ

2λ+∆t
(∇ · τ̃ )), (12)

where

L = I− ∆t

2ρ

(

µs +
µp∆t

2λ+∆t

)

∆. (13)

2.1.1 Viscoelastic Limits

The numerical method captures the appropriate viscous
and elastic limits mentioned in Section 1.
Viscous limit. For the Newtonian viscous limit we
set λ = 0 in the algorithm. The time-centered stress
reduces to

τ
n+ 1

2

i+ 1
2
,j,k

= 2µpD(un+
1
2 ), (14)

and the viscous velocity predictor feels only a Newtonian
stress from the polymer in the fluid:

u∗ = un +∆t(−[(u · ∇)u]n+
1
2 − 1

ρ
∇pn− 1

2

+
µs + µp

ρ
∆(ūn+

1
2 )). (15)



Similarly, the updated stress is

τn+1 = 2µpD(un+1). (16)

Elastic limit. For the elastic limit, λ→∞ with µp/λ
finite, the source term of the stress equation becomes
small compared to the upper-convected time derivative
and viscous term yielding

τ
n+ 1

2

i+ 1
2
,j,k

= τ̃ i+ 1
2
,j,k +

∆tµp
λ

D(ūn+
1
2 ) (17)

u∗ = un +∆t(−[(u · ∇)u]n+
1
2 − 1

ρ
∇pn− 1

2

+
µs +∆t(µp/λ)

ρ
∆(ūn+

1
2 )) (18)

τn+1 = τn +∆t[(−(u · ∇)τ +∇u · τ

+τ · ∇uT )n+ 1
2 +

2µp
λ

D(un+1)]. (19)

2.1.2 CFL Condition

The total algorithm is subject to the following restric-
tion on the timestep:

max
ijk

[|u|+ (2(τ xx + µp/λ)/ρ)
1
2 ]∆t < σ∆x, (20)

max
ijk

[|v|+ (2(τ yy + µp/λ)/ρ)
1
2 ]∆t < σ∆y, (21)

max
ijk

[|w|+ (2(τ zz + µp/λ)/ρ)
1
2 ]∆t < σ∆z, (22)

with σ < 1 for stability and τ xx, τ yy, τ zz > −µp

λ which
is satisfied automatically by the PDE (3).

2.1.3 Boundary Conditions

The conditions imposed at the boundaries for flow in
channels and ducts are (1) solid walls, u = 0, ∂τ

∂n = 0;

(2) inflow, u = v = 0, w = win,
∂τ
∂n = 0; (3) outflow,

∂u
∂n = 0, τ = 0.

3 RESULTS

We apply our method to flow of a DNA solution in
simple (straight, sudden contractions, e.g., Figure 1) mi-
crochannels. Experimental data has been used to obtain
the rheological parameters specific to this fluid and to
also validate the computational model [4]: ρ = 1 g/ml,
λ = 1.14 s, µs = .2538 g/cm/s and µp = .02688 g/cm/s.
Channel width is 0.01 cm with a 2:1 contraction ratio.
The experimental flow rate is 30µl/hr which corresponds
to an average velocity of 0.046 cm/s. These experimen-
tal parameters yield De = 21.1 and Re = 0.0016.

We note some fundamental results (see Table I): (1)
the method is free-stream preserving, (2) the method in
the Newtonian viscous limit achieves the Newtonian ex-
act solution for 2D steady flow (u = (u,w) = (0, w(x))),
and (3) the method in the elastic limit achieves the

Figure 1: Axial velocity (cm/s) in contracting channel.
Flow is left to right. Range: -.007 (blue) to 3.000 (red).
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Figure 2: Axial velocity profiles through contracting
channel.

Newtonian exact solution of the solvent alone for 2D
steady flow. The method calculates a pressure gradient
in the viscous limit of −1558.4 g/cm2/s2; this matches
the Newtonian exact solution of −1559.3 g/cm2/s2 for
a viscosity µ = µs + µp and dp

dz = − 2wmax

µR2 , where R is
half the channel width. The method calculates a pres-
sure gradient in the elastic limit of −1410.0 g/cm2/s2;
this matches the Newtonian exact solution of −1410
g/cm2/s2 for a viscosity µ = µs. The velocity pro-
file is the classic parabolic profile in 2D steady flow:
w = wmax[1 − (x − R)2/R2]. The maximum velocity
is exactly wmax = 3

2
wavg and calculated as 1.500wavg.

We also note that the velocity profiles in Figure 2 of the
2:1 contracting flow in Figure 1 show maximum velocity
of 1.5wavg in the first section of the channel and then
3wavg in the smaller section which has half the channel
width. The negative velocity in the contraction corners
indicates flow recirculation.

In Table II we demonstrate second-order accurate
convergence rates for the method by estimating error on
successively refined grids. The conditions for the con-
vergence study are steady, viscoelastic flow in a straight
microchannel.



Table I: Comparison of exact solution to numerical
method for 2D steady flow.

Exact Method

Pressure gradient in viscous limit −1559.3 −1558.4
Pressure gradient in elastic limit −1410 −1408.9
Maximum velocity 1.5 1.500

Table II: Error and convergence rates for viscoelastic
flow.

Norm e1/32 Rate e1/64 Rate

L1 5.86× 10−3 2.00 1.46× 10−3 2.00
L2 2.93× 10−3 2.00 7.32× 10−4 2.00
L∞ 1.47× 10−3 1.99 3.70× 10−4 1.99

Norm e1/128 Rate e1/256

L1 3.66× 10−4 2.00 9.16× 10−5

L2 1.83× 10−4 2.00 4.58× 10−5

L∞ 9.31× 10−5 2.00 2.33× 10−5

4 CONCLUSIONS

We demonstrate a second-order accurate numerical
method for viscoelastic flow in microchannels. The
method compares very well to exact solutions for New-
tonian viscous fluids in steady flow. In order to properly
address the elastic limit in the equations of motion we
will modify the scheme, taking advantage of the abil-
ity to cast the PDE’s (3) in a hybrid conservation form
which exploits hyperbolicity while maintaining the vis-
cous and elastic limits. Furthermore, in order to exhibit
the full viscoelastic effects (including elastic limit) rep-
resented in the Oldroyd-B constitutive equation, we will
introduce unsteadiness into the flow by varying the in-
flow velocity in time or deforming the domain, for ex-
ample. Finally, we will extend the method to make use
of the higher-order Godunov method of the BCG formu-
lation. Higher-order Godunov methods are more robust
than LW for hyperbolic systems; steep gradients can be
captured while LW tends to smooth discontinuities as
seen in compressible flow. Therefore, for certain appli-
cations such as sudden contractions and other complex
features in microscale geometry it would be advanta-
geous to develop BCG for viscoelasticity.
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